

COP4EE – Prognose und Monitoring der Biomassepotentiale zur energetischen Nutzung

Dr. Jonas Franke, Remote Sensing Solutions GmbH

Dr. Rolf Lessing, DELPHI IMM GmbH

Agenda

- Ansatz in COP4EE
- Status Erzeugung versus Verbrauch
- Biomasse von Forstflächen und Kurzumtriebsplantagen
 - Ausweisung der Potenziale
 - Monitoringansatz
- Biomasse von Landwirtschaftsflächen
 - Ausweisung der Potenziale
 - Monitoringansatz

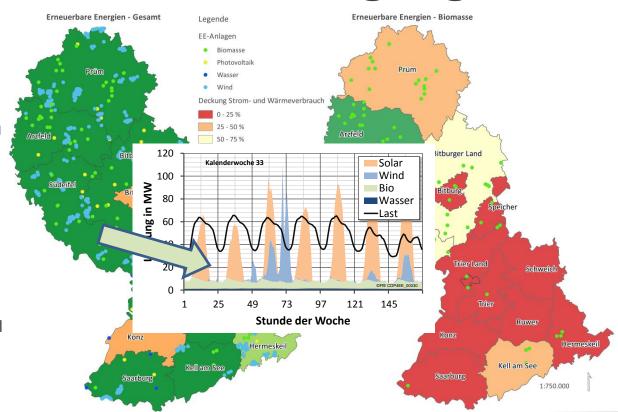
Unterstützung von Planungen

Darstellung des Energiebedarfs

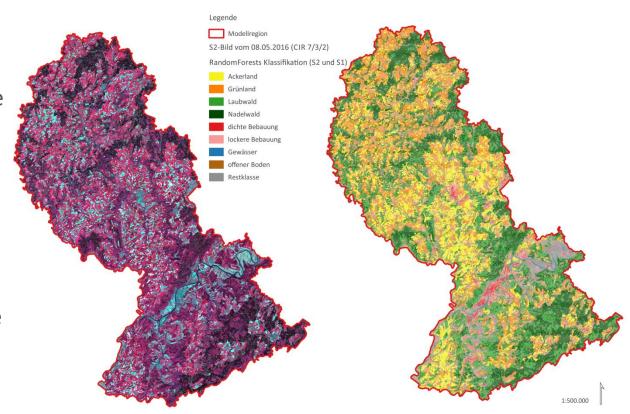
Regionalisiert

Differenziert nach Strom und Wärme

 Darstellung von einzelnen Energie-Potenzialen für jede Fläche


- Prioritätensetzung, welche Erneuerbare Energien für jede Fläche
 - Konkurrierende Nutzungen
 - Ausgewogenheit in der Region

Verbrauch versus Erzeugung

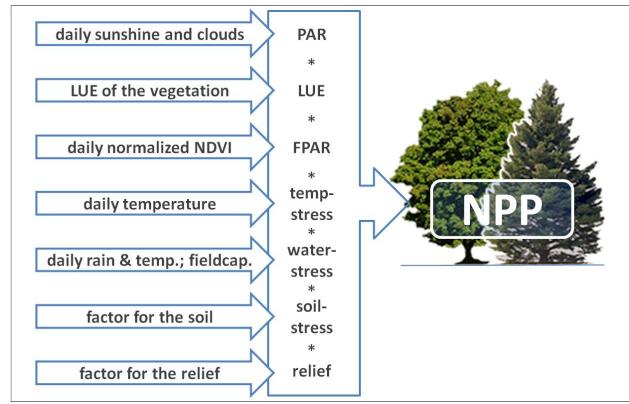

- Status der Deckung des Verbrauchs:
 - Ländliche Gemeinden decken Strom- und Wärmeverbrauch schon zu hohen Anteilen aus EE
 - Starke regionale
 Unterschiede des
 Energieträgers
- Zeitliche Fluktuation & geringe Deckung des Wärmebedarfs von bis zu 20% erfordern Biomasse als Regelenergie

Klassifikation

- Klassifikation anhand
 Sentinel-2 Bilddaten von
 Mai und August 2016 (alle
 Bänder, NDVI) erbrachte
 Gesamtgüte von 89,7%
- Ergänzung der Zeitreihe durch drei Sentinel-1 Szenen von März, Oktober und Dezember 2016 (VV, VH) verbesserte die Gesamtgüte um 0,5% auf 90,2%

Potenziale aus Forstflächen

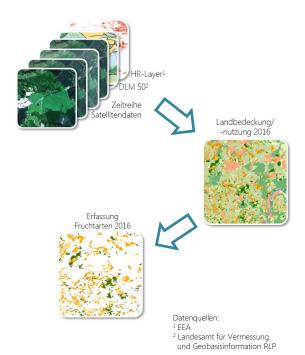

- Grundlage der Berechnung:
 - Durchschnittlicher Biomassezuwachs pro Jahr für Nadel- und Laubwald
 - Umrechnung in Energiepotenzial [MWh] zu Nadelwald und Laubwald
 - Reduzierung auf die anteilige Menge des Waldrestholzes bzw. der Sägenebenprodukte
- Naturschutzflächen teilweise als Tabuflächen
- Künftig Differenzierung nach Baumarten

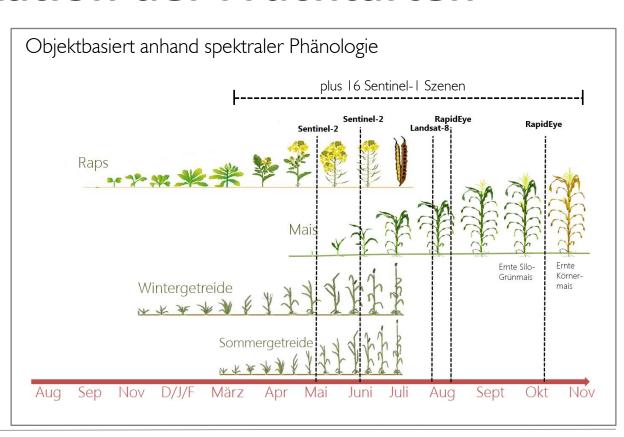

Potenziale aus Kurzumtriebsplantagen

- Berechnungsgrundlage:
 - auf allen Ackerflächen
 - Biomassezuwachs wie bei Forst berechnet für Pappel
- Flächeneingrenzung nach Kriterien:
 - Hangneigung ≤ 10°
 - Höhe ≤ 800 m ü NN
 - Niederschlagssumme/ a ≥ 600 mm
 - Mittlere Jahrestemperatur ≥ 7° C
 - Ackerzahl \leq 60 und \geq 30
 - Feldkapazität ≥ 140
- Naturschutzflächen teilweise als Tabuflächen

Monitoring Forst und KUP

- Biomasse als "Regel"-Energie
 - Kalkulatorischer Ansatz zum Vegetationsbeginn
 - Monitoring Zuwachs über Regionales Biomassemodell
- Methode
 - NPP = APAR * ε
 - NPP = PAR * FPAR * ε
- Optimierung mittelsSentinel-2 und -1

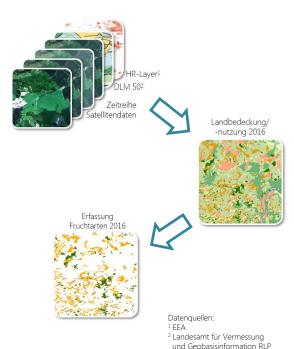




Monitoring und Prognose der Biomassepotentiale aus Energiepflanzen und Grünland unter Berücksichtigung ökologischer Aspekte

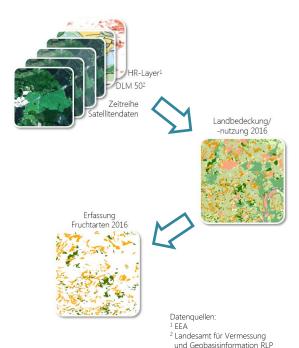
Klassifikation der Fruchtarten

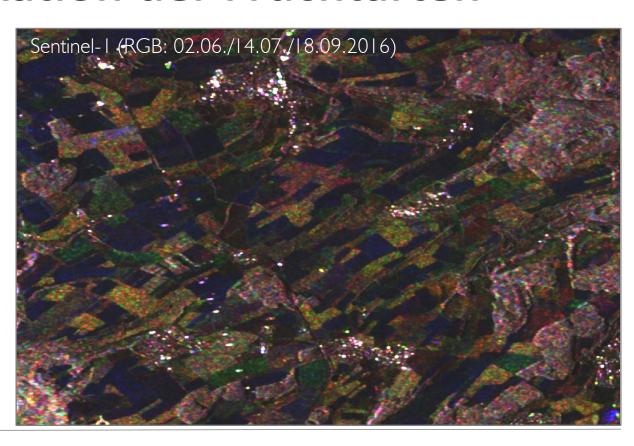
Klassifikation für 2016



Klassifikation der Fruchtarten

Klassifikation für 2016





Klassifikation der Fruchtarten

Klassifikation f
ür 2016

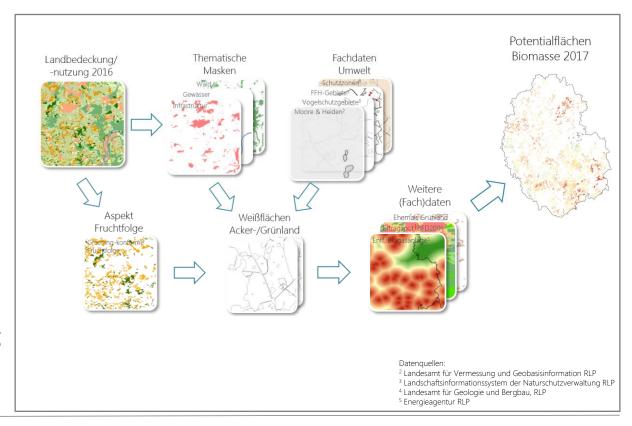
Potenziale aus Energiepflanzen

- Empirische Schätzung der theoretischen Strompotenziale 2016
- Planungsgrundlage: zur Verfügung stehender EE-Anteil der landwirtschaftlichen Biomasse

Eifelkreis Bitburg-Prüm

	Anbau -fläche 2016 [ha]	davon Energie- pflanze [ha] (%)	Durchschnitt- licher Ernteertrag/ha	Theore- tischer Ernte- ertrag gesamt	Theoretisches Strompoten- zial [MWh] **	Anteil an gesamter Stromeinspeis ung aus Biomasse in Bitburg- Prüm***
Mais	12.748	1.657 (13%)*	50 [t FM]**	82.862 [t FM]	31.037 (18,7 MWh/ha)	23 %
Raps	1.895	474 (25%)****	40 dt/ha ~1.546 L Öl/ha**	732.804 L	7.042 (9,6 kWh/L)	5,2 %
Grün- land	43.849	Pro Schnitt	23 [t FM]**	1.008.527 [t FM]	332.331 (7,6 MWh/ha)	244 %

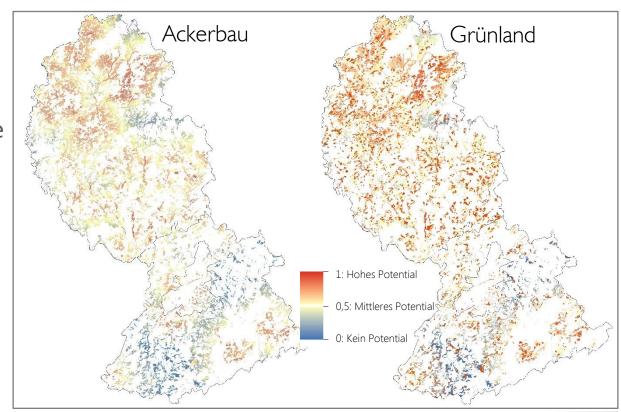
^{*}RLP: 13% als Energiemais (Deutsches Maiskomitee)


^{**} Fachagentur Nachwachsende Rohstoffe e.V.: Biogas Basisdaten Deutschland Stand 2013

^{***} Statistisches Landesamt RLP, Referenzwerte aus 2014

^{****} http://www.nicht-fossil.de/19/pflanzenoel-kraftstoff.htm

Modellierung Potenzialflächen 2017


- Identifikation von Potenzialflächen zum Energiepflanzenanbau (Vorausschau)
- Berücksichtigung von:
 - ökologischen Aspekten
 - wirtschaftlichen Aspekten
 - Ertragspotenzial der Fläche
 - Nachhaltigkeitsaspekte
- Nutzen: Nachhaltigkeitskonforme Regionalplanung von FF-Flächen

Ergebnis Potenzialflächen 2017

- Grundlage zur regionalen Planung der Energiewende
- Auswahl von Flächen die aus ökologischer, wirtschaftlicher und ethischer Sicht am sinnvollsten sind.
- Für jede Potenzialfläche kann das Energiepotenzial angegeben werden.

Monitoring der Biomasseentwicklung

- Fernerkundliche Prognose der Biomasseentwicklung
- Sentinel-1 und Sentinel-2
 Parameter (Zeitreihe) als
 Eingangsdaten für
 Wachstumsmodell
- Unterstützung des Lastund Einsatzmanagements der Bioenergie (zu erwartende Regelenergie)

Beispiel: Teilflächen-spezifische Prognose der Erträge mittels RapidEye und Vergleich zum gemessenen Ertrag

Gefördert durch:

Danke für Ihre Aufmerksamkeit

Dr. Jonas Franke, Remote Sensing Solutions GmbH

Dr. Rolf Lessing, DELPHI IMM GmbH

Testflächen

- Rheinland-PfalzStart mit dreiLandkreisen
- Gute Datenlage
- Energieagentur bekannt

Bild zu einer Verbandsgemeinde

Schematische Darstellung - Baumaushaltung

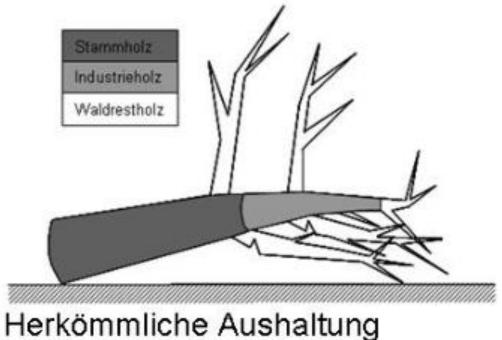
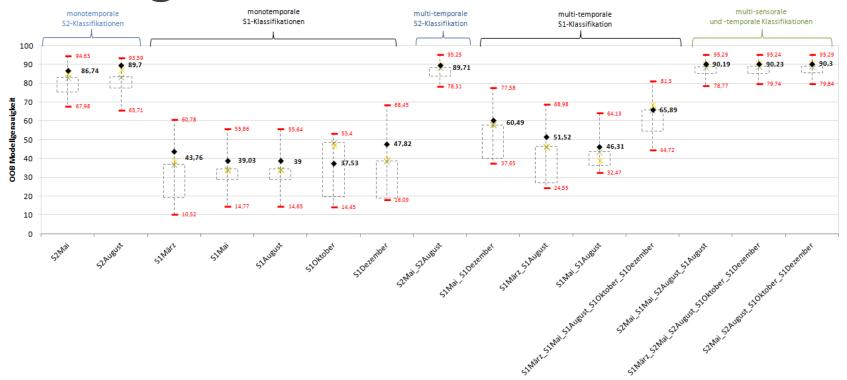



Abb.: Hepperle et al. 2007

Vergleich der Klassifikationsmodelle

- OOB Minimum

OOB Maximum

X OOB Median

× OOB Mittelwert

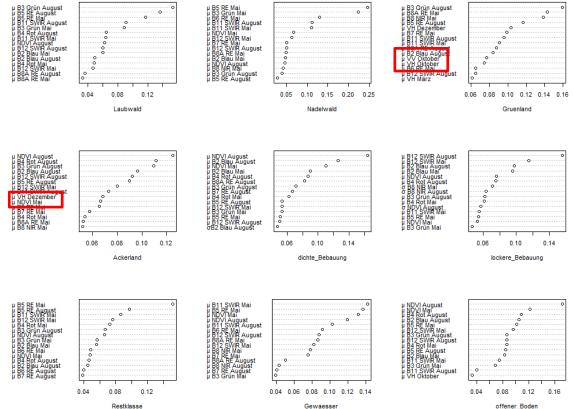
♦ OOB Gesamt

Bilddaten des verwendeten RF-Modells

Konfusionsmatrix des RF-Models

ntree	00B 9.77%	Ackerland	dichte		Gewaesser		Laubwald	lockere 1	Bebauung	Nadelwald	d offener Boo	den Restkla	isse
500:	9.//8	20.268			38.46%	9.16%	6.19%					12.83%	
500:	90.23%	79.74 %	77.94%		61.54%	90.84%	93.81%	80.22%		95.24%	50.95%	87.17 %	
		Ackerla	nd dicht	e Bebauung	Gewaesser	Gruenland	Laubwald	lockere B	ebauung :	Nadelwald (offener Boden	Restklasse	class.error
Ackerl	and	66	62	27	0	894	37		56	9	0	670	0.20263315
dichte	Bebauur	ng	1	8574	0	0	0		2231	2	18	175	0.22061631
Gewaes	ser		0	7	336	0	55		5	101	0	42	0.38461538
Gruenl	and	1	31	0	0	13687	91		23	71	0	1064	0.09159089
Laubwa	ld		4	7	0	65	53255		88	2011	0	1342	0.06194955
locker	e Bebauı	ing	5	1847	0	40	89		13931	42	6	1407	0.19784649
Nadelw	ald		7	4	0	39	2579		48	61200	0	384	0.04763387
offene	r Boden		1	124	0	0	0		12	0	188	44	0.49051491
Restkl	asse		67	175	8	1032	2016		771	407	4	30441	0.12828957

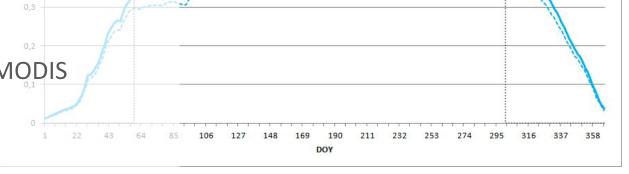
Verwendung von Sentinel-1 März, Sentinel-2 Mai, Sentinel-2 August, Sentinel-1 Oktober, Sentinel-1 Dezember


Konfusionsmatrix des RF-Models

ntree OOB 500: 10.29% 500: 89.71%	Ackerland 21.69% 78.31%	dichte_Bebauung 21.95% 78.05%	Gewaesser 37.91% 62.09%	Gruenland 11.27% 88.73%	Laubwald 6.39% 93.61%	lockere_Bebauun 19.66% 80.34%	g Nadelwal 4.75% 95.25%	d offener_Boden 54.20% 45.80%	Restklasse 14.44% 85.56%	
	Ackerland	d dichte_Bebauung	Gewaesser	Gruenland	Laubwald	lockere_Bebauung	Nadelwald o	ffener_Boden Res	klasse class.er	ror
Ackerland	654	38	0	877	35	74	19	_ 0	769 0.21687	7612
dichte_Bebauung	g :	8586	0	1	0	2229	2	20	160 0.21952	2550
Gewaesser	() 6	339	0	53	4	99	0	45 0.37912	2088
Gruenland	129	9 0	0	13369	104	33	101	0	1331 0.11269	9662
Laubwald	1	3 7	0	85	53143	80	2080	0	1369 0.06392	2236
lockere_Bebauu	ng !	1874	0	44	95	13952	30	7	1356 0.19663	3730
Nadelwald	(5 2	0	44	2545	45	61209	0	410 0.04749	381
offener_Boden	(148	0	0	0	10	0	169	42 0.54200)542
Restklasse	9.	268	6	1268	1940	1015	451	1	29877 0.14444	1031

Verwendung von Sentinel-2 Mai und Sentinel-2 August

Einfluss der FE-Bänder auf die Klassengüte


Optimierung NDVI

Nutzung von Sentinel 2 in der

Hoffnung, mehrere Zeitpunkte für einen NDVI zu bekommen

 Untersuchung des Einsatzes von Sentinel 1 als "Stütze" für den Verlauf

Ziel: Substitution von MODIS

